- maximales Ideal
- максимальный идеал
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Maximales Ideal — ist ein Begriff aus der Algebra. Definition Es sei R ein Ring. Dann heißt ein Ideal maximal, wenn ein maximales Element ist in der durch die (mengentheoretische) Inklusion halbgeordneten Menge aller echten Ideale. D.h. für jedes echte Ideal … Deutsch Wikipedia
Ideal (Ringtheorie) — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… … Deutsch Wikipedia
Zweiseitiges Ideal — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… … Deutsch Wikipedia
Maximalideal — Maximales Ideal ist ein Begriff aus der Algebra. Definition Es sei R ein Ring. Dann heißt ein Ideal maximal, wenn ein maximales Element ist in der durch die (mengentheoretische) Inklusion (teilweise) geordneten Menge aller … Deutsch Wikipedia
Zorns Lemma — Das Lemma von Zorn, auch bekannt als Zorns Lemma, Kuratowski Zorn Lemma oder zornsches Lemma, ist ein Theorem der Mengenlehre, genauer gesagt, der Zermelo Fraenkel Mengenlehre, die das Auswahlaxiom einbezieht. Es besagt: Jede nichtleere… … Deutsch Wikipedia
Zornsches Lemma — Das Lemma von Zorn, auch bekannt als Zorns Lemma, Kuratowski Zorn Lemma oder zornsches Lemma, ist ein Theorem der Mengenlehre, genauer gesagt, der Zermelo Fraenkel Mengenlehre, die das Auswahlaxiom einbezieht. Es besagt: Jede nichtleere… … Deutsch Wikipedia
Lemma von Zorn — Das Lemma von Zorn, auch bekannt als Lemma von Kuratowski Zorn, ist ein Theorem der Mengenlehre, genauer gesagt, der Zermelo Fraenkel Mengenlehre, die das Auswahlaxiom einbezieht. Es ist benannt nach dem deutsch amerikanischen Mathematiker Max… … Deutsch Wikipedia
Lokaler Ring — Ein lokaler Ring ist im mathematischen Gebiet der Ringtheorie ein Ring, in dem es genau ein maximales Links oder Rechtsideal gibt. Lokale Ringe spielen in der algebraischen Geometrie eine wichtige Rolle, um das „lokale Verhalten“ von Funktionen… … Deutsch Wikipedia
Ideale Zahl — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… … Deutsch Wikipedia
Linksideal — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… … Deutsch Wikipedia
Rechtsideal — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… … Deutsch Wikipedia